
Profile

Name: Osakabe

Species: Humanoid(-ish?)/Yokaï

Occupation: She's not seen much, said
to only leave her chambers once a year.
No one quite knows what goes on behind
the doors the rest of the year, she isn't
actually the social type..

Physical description

Slim with Hunchback Posture

• Face: She wears a mask, not many
know what's underneath...

• Height: 5'9", but her 12 layered
Kimono makes her seem a lot bigger!

Oh, She Has 9 Arms

• How does she use them?

Background

<<ORIGIN>>

<<Insert tragic backstory here>>

DETECTION

General Description

Senses through AIPerception

Sight

Hearing

Touch

Prediction

Knowledge

Hearing Sense

Description

The hearing sense allow the AI to be
perceptive to anything that is loud
enough within a certain range. It allows
for perceiving things behind walls or
otherwise out of the view cone.

In contrast to sight this sense isn't
always relevant. Where sight can always
be seen, something can only be heard
when it makes an actual sound. This
means this sense will be triggered by
player actions rather than their mere
presence.

To prevent the experience from feeling
unfair a perceived sound on it's own can
never alert the AI. It can make it
suspicious and make it decide to
investigate. It can then confirm it's
suspicion by detecting the player with
their sight sense but the sound alone
won't be enough to detect the player.

Sound doesn't always create tension.
Especially reoccurring sounds you hear
over and over again such as footsteps
are easy to get used to. This tension can
be created with some excellent feedback
such as readable animations that indicate
the AI heard you (1). You can thing of it
like a deer eating to then quickly looking
up to hearing something in the bushes.

Pathfinding

To mimic realistic sounds we'd have to
account for sound traveling through
walls. As actually simulating this is quite
complicated we'll go by a simpler solution
that seen in various games (2). Instead of
using the distance to the sound we'll use
the path finding distance. This way we'll
be able to mimic sound traveling around
walls rather than through them!

Referred Research Links;

(1): Blind Enemies (Link)

Other Sources;

(2): GDC AISummit: "Spaces in the
Sandbox: Tactical Awareness in Open
World Games" (Link)

Touch Sense

Description

This is really just there to prevent the AI
from looking stupid. This sense build off
the assumption that the player at this
immediate vicinity should've likely bee
detected by sound or sight but there are
edge cases where this might not be the
case. For example is when both are in the
incense smoke, and the player sits still,
they would be undetectable. This sense
will ensure that no matter what the
conditions are, if the player and the AI
are touching the player will always be
detected.

Prediction Sense

Description

This sense is slightly more complicated
as it isn't just a fact of seeing something
yes or no but trying to combine info to
anticipate the player's next move.

An over simplified example would be not
seeing if the player left a room through
exit one or two. If exit one is towards the
player's objective then that's probably
the way to go but if there's already a
spirit animal over there the AI may decide
to take exit two anyways to spread out
and cover more ground.

Future Plan

This system would be easiest to build if
there's actual things to predict. This
sense will likely not be created in sprint
one. Depending on priority it may be
planned in for sprint 2. This sense will
need its own research and story due to
it's complexity and as it's not essential to
the mvp it won't be part of the initial
conditions of satisfaction.

Knowledge Sense

Description

This 'sense' is basically gathering info
from items in the world. In its simplest
form it means the AI will inspect a door if
it find the key that belongs to it is
missing.

This can both be used to anticipate
player actions as will as guide the player
as the AI will inspect the door which
relates to the key the player stole. This
provides the player info on what the key
is used for.

Future Plan

This 'sense' is not part of the mvp and is
therefore not a must for the first iteration
on the perception system. As it will need
its own research and logic it will be put
on the backlog for now.

Sight Senses

Description

Sight will be the AI's dominant sense.
Where senses such as hearing and touch
can be seen as only relevant when
triggered the sight will always be relevant
even when nothing is perceived. What
this specifically means is that when the
AI wants to inspect something it will do
so by looking and not by trying to listen
for it or try to touch it. Secondly it means
that only the sight sense can actually
detect something. If something is heard,
it first needs to be confirmed by sight
before the AI will act upon it.

For the actual sight senses and view
cones we primarily looked at the AI from
Alien: Isolation (1). The reasons for this is
their multi view cone set up. While this
set up may sound like over complicating
it, it is actually very helpful for AI that
roams around the world freely. In
contrast to set patrol paths we as
designers have less direct control over
where the AI looks as this isn't scripted
in. By using multiple view cones we
extent what the AI can see without it
being unfair by giving it eyes on the back
of its head (2). Read further below to
read about each sight sense's unique
purpose and functionality.

Default

This is the basic most version when it
comes to view cones. It's the longest and
will be roughly 75 degrees wide
(believable angle for normal human
vision). This sense will be active on
default and out of all the individual
senses this one sits at the very core.

A player entering this cone will not be
immediately detected but will have to be
seen for a certain amount of time to allow
for a more fuzzy detection (preventing
unfair experiences of the AI seeming
overly perceptive). The rate at which this
goes will have several modifiers to it such
as the distance to the target. These
modifiers should be easily scalable and
be applied to for example the player
being less noticeable when crouched.
Although some games make it a very
front stage mechanic (3) we'll keep it
limited to hiding spots in the level to
prevent the player from becoming/feeling
too powerful.

Peripheral

This sense works parallel to the default
sight sense. It's purpose is to detect at a
very wide angle (around 120 degrees)
but at a very short range to mimic
peripheral vision. This pretty much
ensures the AI isn't oblivious to things
happening right next to it.

As this is at such a short range the
distance modifier would be a lot less as
well as the overall detection rate being a
lot lower. This is really just there to be
able to see a player sprinting by at full
speed.

To ensure a fair experience this view
cone will not actually detect the player.
Instead it will become 'suspicious' and
the perception would have to be
confirmed by one of the other sight
senses. This way the AI has to look at the
player before detecting them. This makes
it very clear to the player when they're
being seen.

Focus

This sight sense as to be activated upon
which it will enable itself and disable the
other sight senses.

With focus vision it's detection rate will
be a lot faster as it was triggered by a
noise for example.

Its cone is slightly shorter than the
default but a lot tighter, to mimic tunnel
vision. Al though this is a threat at first
glance it can also be used to the player's
advantage by creating a distraction that
will make the AI focus on that allowing
the player a window to sneak by.

Referred Research Links;

(1): Alien Isolation Vision Sense (Link)

(3): Conditional Stealth (Link)

Other Sources;

(2): AI and Games: "Revisiting the AI from
Alien: Isolation" (Link)

Key; �RED�=listener; �GREEN�=hearing range; �BLACK�=walls;

Key; �RED�=default; �GREEN�=peripheral; �YELLOW�=focus;

RESEARCH

Detection System

MOVEMENT

BEHAVIOUR

Gameplay

DON'T LOOK!

She may be sly and dangerous aura
seem like something you want to keep an
eye on. Resist that urge, it'd be the last
thing you'll ever see!

Her Lovely Pets

Who doesn't like a friendly fox?

In General

The AI is executed through behaviour tree
but in concept it is closely related to finite
state machines. Each state has its own set
of behaviour and works closely together
with the detection system in regards to
transitioning in between them.

I'll describe each state on a high level first
and then further down you'll find
visualization for each of the individual tasks.

Default

The default state is the initial and primary
state for the AI. It's behaviour is to roam
around and 'search' for the player. This is
broken down in several sub-branches.

Direct Move To

The basic most movement action where the
AI directly run towards its target location.
The action is perserved for only long
distances. As it's not the most interesting
action we only use it when we need to get
AI from A to B in a reasonable time-frame.

Patrol Area

When the AI is already at their destination we don't want
them to just stand there. In this case we score 'point of
interest' in the area to patrol through. It scores them on
distance from each other (move to 3 points right next to
each other wouldn't be too interesting) and if they're past a
certain threshold they will score negatively the further they
are removed from the target (this threshold is roughly set
so points in the same room won't receive a negative score).

Look At

If a destination is reached we don't want the
AI to immediately move on, we want to
emphasize that moment a little bit (both as
feedback but also as a window of time for
the player to act while the AI doesn't move).
We do this simply by make the AI scan the
room for a bit. We run some tests based on
where it can see the most (so it doesn't
stare at a wall) and then rotate the AI to
look in that direction for a while until we
proceed with its following action.

Patrol Move To

In this task the AI walks from A to B through a selected
number of 'points of interest' which results in some more
interesting behavior as the AI doesn't just walk straight to
it's targets. This is our preferred way of moving, however
it is quite a bit slower due to the inefficient path (which is
on purpose to make it interesting). For that reason we
don't use it for longer distances as it would result in travel
times being to long and the information that the action
was picked on isn't relevant anymore.

RESEARCH

Behaviour Systems

Look

This task will stop the AI in its track and will
make it look over at the suspicious event.
This is set to a timed value, if nothing is
seen to fully alert it in that time it will
proceed with its 'default' state behaviour.

Suspicious

This state is the AI's response to mild
impulses. This can be a glance of the player
or a noise from a visible location. Entering
this state will cause the AI to look over to
the location of the event that instigated it.

Inspect

This is its initial step. The AI will walk over to
the area of origin. If this happens during
patrolling or other general movement it will
abort those as this [inspecting] is of a
higher priority.

Investigate

Investigate is initiate when an impulse can't
be directly located. For example when a
noise from a room over is hearing but its
origin can't be seen.

Search

Once the AI is in the area that instigated the
investigation it will test what it can't see.
After scoring them the AI will search one
possible location where the player could be
hiding. If the player isn't found the AI will
return to its default state.

Alert

At this point the AI is fully aware of the
player. This is a brief moment of intense,
pants shitting gameplay. Dashing

The AI will dash at incredible speeds
(almost jump-scare like) to a location nearby
the player and right in the center of their
view. Which then forms the 'attack' dynamic
together with the knowledge that looking at
the AI deals the player damage.

Background

We use the background area to give the
player some space to breath. This area is
inaccessible to the player, meaning that is
the AI is in it, it isn't an immediate threat to
the player.

Secondly we use this to as a means for the
AI to fast travel without using actual (unfair)
teleportation. When in the background the
AI can sprint in a shortcut, meaning they're
able to get anywhere faster then the player
yet it still takes time (making it fair and
easier for the player to anticipate (because
there are more defined rules to it)).

Entering Background

The gateways between the foreground and
the background. When the AI is told to move
to the background it will move to a point
behind the entrance that's has the shortest
walking distance. This is important as an
entrance a floor higher may be close by but
is at a longer walking distance. As well as
one way entrances (such as a ledge that
can be jumped down from but not up). It
may be the closest but if the AI can't jump
up there it still has to walk around and find
another way.

This task will abort all others as it's backing
off, meaning it will ignore the player while
it's 'running away'.

('In the Wind') Movement

Once in the background the AI will move to the
entrance that's closest to its target location.

If at all possible it will do so without ever
leaving the background area. If the specific
entrance is inaccessible that way it will travel
through the foreground. To make clear the AI is
in it's background state it isn't visible but
instead shows a smoky particle effect as
feedback of it's movement to the player.

ALL SPECIFIC TASKS VISUALIZED

Default

During this state the Osakabe will roam the
halls of the castle in search of the player. It
will move to and around the objective area
and it's surrounding points of interest.

During this state the AI isn't at all aware of
the player.

Suspicious

When the AI has heard something and
visibility to it's origin isn't blocked the AI will
go into the suspicious state. The AI will turn
and look towards the perceived origin of the
stimuli. After looking it will either detect the
player or go back into the default state if
nothing is seen.

The AI does at this point have a 'soft'
reference to the player. This means that if
the player is seen and walks away the AI's
gaze will follow the player and not just stare
with an empty gaze to the stimuli origin.

Investigate

The Investigate state is triggered by the AI
catching enough of a glance of the player or
by a noise event that's blocked in visibility.

In the investigate state the AI will move
towards the stimuli origin and then move to
one more location where the player could
be hidden, around a corner for example.
This is completely based on it's own senses
and tests, the AI doesn't know where the
player is beforehand.

If the AI doesn't find the player it will
proceed in the default state.

Alerted

When alerted the AI will always be fully
aware of the player's location and 'dash' in
front of them. When looked at by the player
they deal damage.

This state has a limit in order to control the
pace. After a while it will back off into the
background area in order to give to player
some space to breath again.

BASIC MOVEMENT

'BACKGROUND' MOVEMENT

DIRECTOR AI

What To Expect Here

The movement for a large part is based on systems
in the Unreal Engine. We make use of objects such
as the Nav-Mesh and the Character Movement
Component as the foundation of the AI's movement.
Although we also use its pathfinding, our application
is slightly different. However, in here we describe
the movement itself, how this is used by the AI can
be seen in the more interesting 'behaviour' section.

The main things covered here will be the
components added to the existing Unreal systems.
You can expect 'Rulebooks' and the 'Background'
level layer as the main topics.

CAUTION!

Some aspect of movement systems in Unreal that normally
can be left to assumption are slightly different here.
Example are having multiple nav-meshes and using
obstacle areas as data for other systems. Please read the
technical documentation to be sure you're clear on how
some systems are used differently then one might expect.

High-Level Description

The AI can move around the world at separate 'gaits'.
For this we use a 'rulebook' system to update variables
in runtime according to predetermined values. This
means the AI never updates just one value (such as
increase max speed) but updates all values in the
'rulebook' (so running isn't just an increase in speed but
also in acceleration and rotation rate).

Secondly we make use of a 'background' layer. This is a
space in the level only the AI can enter. We use these
to control the pace, either by moving the AI there to
give the player some space to breath or to give the AI a
shortcut/secret passage to get anywhere in the level
faster (without just teleporting it). Movement Design Sketch, �Note that actions actions such as Barge and Crawl aren't part of the 'mvp')

RESEARCH

Enemy Movement System

'Rulebooks'

The Osakabe has four basic movement
options. These are; walk, run, sprint and
dash. These are set in runtime by using
the 'Update Rulebook' macro and
selecting the desired 'gait' on its input
pin. These 'Rulebooks' are a set of data-
only blueprints that store values of a
struct of data. These values are then set
by the AI as its own. This makes it easier
to consistently change these in runtime
as it will set all the variables and doesn't
need to set each variables manually.

Walk

This 'gait' is used by the AI when there isn't
much haste by its actions. Typically used
with the patrol tasks (Patrol Move To and
Patrol Area).

It's not particularly fast but it's search
through the area and doesn't have a need to
speed up.

This state also comes with slower
acceleration and slower rotation rate and
have no applied braking force. This means it
will smoothly slow down as it approaches its
destination.

Run

The run is typically used in moments where
we need to get the AI somewhere before
the moment has passed. This can be
running towards something to investigate as
we want the AI to search there before the
player had plenty of time to get away. As
well as when the movement destination is
longer. If the AI would walk, by the time it
reaches the target it is nowhere near where
it actually needs to be, thus we run.

Compared to walking, all variables are
slightly raised except for the braking force.
This remains to be not applied.

Sprint

This 'gait' is unnaturally fast. It's only used in
cases of the AI not being seen by the player.
This can for example be when it's in the
background. The background paths need to
be faster for the AI so increasing its speed
will ensure they're faster, even if the
distance is longer.

As not all background areas are connected
it can occur that the AI has to pass through
the play space to get there. In this case the
AI is invisible and only noticed by smoke-ish
particles passing by. (note this is defined by
the behaviour, this is not bound to this
'gait').

As this gait isn't seen by the player a lot of
'inevitability' settings can be removed.
Instant acceleration, rotation rate and brake
force are used here. In combination with a
high max speed.

Dash

The dash is exclusively used during the alert
state to get in the player's view. It's pretty
much a jump scare that is just one step
down from plain teleporting.

The reason it's this fast is because it needs
to compete with the player's rotation rate. If
the player looks away, the AI needs to get in
center view just after.

As the distances are often short the AI
doesn't use any acceleration. If it did it
would never reach the desired velocity. The
same goes with rotation, at those speeds it
doesn't make sense for it to have any kind
of turning circle, so it doesn't.

Background

We use the background area to give the
player some space to breath. This area is
inaccessible to the player, meaning that
is the AI is in it, it isn't an immediate
threat to the player.

Secondly we use this to as a means for
the AI to fast travel without using actual
(unfair) teleportation. When in the
background the AI can sprint in a
shortcut, meaning they're able to get
anywhere faster then the player yet it still
takes time (making it fair and easier for
the player to anticipate (because there
are more defined rules to it)).

Areas

The background layer in the level is marked
with a purposed actor. These don't need to
be accurately placed but what is important
is that the entire background area is
overlapped and none of the playspace is.

Their only purpose is to be used in checks
to see where the AI is. This information is
then used in the behaviour tree.

Navigation

Every passage between the two layers are
marked as 'obstacle' nav areas. Using a
custom nav filter 'OsakabeDefault' when can
use that to identify point in a different level
layer as the AI. The cost of the obstacle is
set to 10000, meaning we can use it to
identify areas when we're aware that
everything <10000 is in the same layer as
the AI. Using the nav filter 'nullobstacle' we
can filter out all the passages which would
force the AI to move while staying in the
level layer it is in. Please view the technical
documentation for a more detailed view on
the specific uses of the navigation system.

Entrances

The 'entrances' are the gateways between
the playspace and the background.

These have a front face and a background
face. They come with a Nav-link to connect
the navmeshes. These are set up for regular
movement on a floor but a level designer
can move the nav-link pods in the instance
to set it up for vertecal movement i.e.
jumping down. In those cases it also need to
specified that the entrance can only be
used in one specific direction. To make the
AI aware it can jump down but not up.

The Osakabe gets some info from a director
AI. For example, when it's too far away for
too long it will get push in the right direction.

Currently the Director is linked up however
this was done in anticipation for block D.

Expect this section to get updated once it's
being worked on in the future!

Use This Document

Click middlemouse to drag page around!

Press Z to zoom out!

https://edubuas.sharepoint.com/:b:/s/2020-21FGA2.P3DP-Osakabe/EWgut8QpPQNMlWMRGoCiYYgBsUR7iaZO6zHRH3UMxWSe9g?e=RHw4z9
https://www.gdcvault.com/play/1018038/Spaces-in-the-Sandbox-Tactical
https://edubuas.sharepoint.com/:b:/s/2020-21FGA2.P3DP-Osakabe/EQ7Outi4FvJMuRVxSXfCJwcB9lQDrw_SjED93dJ0nNfVjg?e=ayVgOH
https://edubuas.sharepoint.com/:b:/s/2020-21FGA2.P3DP-Osakabe/EZm8Am2p-8dHvycLtVDFajwBEIIEuc0Y-LW5_3Ui21_X4w?e=2hbv13
https://www.youtube.com/watch?v=P7d5lF6U0eQ&t=532s

